A ¹³C Cross Polarization–Magic Angle Spinning (CP–MAS) N.M.R. Study of Crystalline Cyclohexa-amylose Inclusion Complexes. Conformationdependent ¹³C Chemical Shifts are related to the Dihedral Angles of Glycosidic Linkages

Hazime Saitô,^{a*} Giichi Izumi,^b Takashi Mamizuka,^c Sintaro Suzuki,^c and Ryoko Tabeta^a

^a Biophysics Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, 104, Japan

^b Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, 141, Japan

^c Department of Chemistry, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo, 167, Japan

¹³C Chemical shifts of the C-1 and C-4 atoms of crystalline cyclohexa-amylose enclosing a variety of guest molecules are significantly displaced as a result of host–guest interaction and are related to the dihedral angles (ϕ and ψ) at the glycosidic linkages.

We have previously shown, for several polysaccharides with a variety of glycosidic linkages, that ¹³C chemical shifts of the C-l and C-X atoms at the glycosidic linkages in gel^{1a} and solid^{1b-d} states are substantially displaced downfield (up to

5 p.p.m.) with respect to those in aqueous solution. These displacements may be interpreted by recognising a conformationdependency of ¹³C shifts on changes in the dihedral angles (ϕ and ψ for rotation about the C-l-Ogly and Ogly-C-X bonds,

Figure 1. 75.46 MHz ¹³C CP–MAS n.m.r. spectra of crystalline cyclohexa-amylose inclusion complexes (A––F) and of lyophilized sample (G). Contact time 1 ms; recycle time 2 s; number of transients 500–1000. Peaks marked + are from residual signals from the rotor [perdeuteriated poly(methyl methacrylate)] and probe assembly. Insets (a) and (b) are carboxy ¹³C signals of crystalline sodium [1-¹³C]acetate and of potassium [1-¹³C]acetate in CHA, respectively. Spinning sidebands (s.s.b.) of the C-1′ in B were minimized by multiplying one spectrum by another taken at a different spinning rate. ¹³C Shifts of sodium benzenesulphonate (shifts in parentheses are from aqueous solution): C-1′; 169.3 (142.9), C-2′; 123.8 (122.7), C-3′; 131.4 (129.3); C-4′, 144.0 (131.8) p.p.m.

respectively); ¹³C shifts in gel and solid states are determined by fixed values of these dihedral angles, while those in aqueous solution are time-averaged as a result of rapid conformational isomerism about the glycosidic linkages.

Here we report the first ¹³C n.m.r. study of crystalline cyclohexa-amylose (CHA) inclusion complexes by the cross polarization-magic angle spinning (CP-MAS) technique² to obtain further information about the conformation-dependent ¹³C shifts and hopefully to relate this to the dihedral angles determined by *X*-ray crystallography.³

Figure 1 illustrates ¹³CCP–MAS n.m.r. spectra of some CHA inclusion complexes. Crystalline samples enclosing guest molecules appear to give narrowed peaks which split into several peaks in the C-1 and C-4 regions. These ¹³C peaks were readily assigned when compared with the range of shifts of CHA and amylose in aqueous solution;¹⁰ they are summarized

in Table 1. ¹³C Shifts of acetate, ethanol, and propan-1-ol as the guests (primed carbon atoms) are not significantly displaced from those found in solution. However, the ¹³C signals of the C-1' and C-4' carbons of the benzenesulphonate group in the complex are substantially displaced downfield (-26 and -12 p.p.m., respectively) compared with those in aqueous solution (pH 7).

It is convenient to discuss the ¹³C shifts of CHA by dividing its inclusion complexes into two groups, one containing symmetrical adducts (with approximate six-fold symmetry) and the other, asymmetrical (deformed structure) complexes. The dihedral angles of the symmetrical complexes enclosing potassium acetate^{ab} and sodium benzenesulphonate^{3e} are 169 \pm --1.2 and --171.2 \pm 2° for ϕ and ψ , respectively, whereas those of the asymmetrical ones enclosing H₂O,^{3d} methanol,^{3c} and propan-1-ol^{3a} are broadly distributed in the

	Crystalline inclusion complexes								Amylose		
	Symmetrical			Asymmetrical							
	Potassium acetate	Sodium benzene- sulphonate	Dihedral angles ^a	H ₂ O	Methanol	Ethanol	Pro- pan-1-ol	Dihedral angles ^a	V-amylose	Dihedral angles ^a	Aqueous soln.
C-1	100.3	101.9 100.7	169 - 1°°	102.1	102.3	102.7	102.7 100.4	$\frac{160 \pm 2^{\circ d}}{169 \pm 7^{\circ d}}$	102.6	164,6 ^{~e}	100.3
C-4	80.9	80.1 -	$-171 \pm 2^{\circ c}$	81.1	82.3 80.7	82.1 80.5	81.4 80.4	$-183 \pm 7^{\circ d}$ -168 $\pm 9^{\circ d}$	82.4	—186.1°e	77.9
C-6	61.1	62.1	$\mathbf{g}^+\mathbf{t}$	75.6 60.7	75.6 60.3	76.2 60.1	75.7 60.6	$\frac{-150}{g^{-}g^{+}}5^{\circ d}$	62.4	g+t	61.4
C-3 C-2 C-5	72.6	73.6		72.6	73.0 71.6	73.6 72.0	73.1 71.5		73.2		72.4 72.0

Table 1. ¹³C Chemical shifts of crystalline cyclohexa-amylose inclusion complexes (p.p.m. from Me₄Si, \pm 0.5 p.p.m.)

^a The dihedral angles for the C-1 and C-4 shifts are given by the ϕ and ψ , respectively (for definitions, see ref. 3a). The angle for the C-6 shift is given by either g⁺t or g⁻g⁺ orientation. ^{b 13}C Shift data taken from ref. 1c. ^c Taken from refs. 3b and 3e. ^d Taken from refs. 3a, 3c, and 3d. ^e Taken from ref. 4.

following two or three regions: $\phi = 160 \pm 2$ and $169 \pm 7^{\circ}$, and $\psi = -183 \pm 7$, -168 ± 9 , and $-150 \pm 5^{\circ}$. The appearance of two or three peaks is consistent with this distribution of the dihedral angles. Thus, it is reasonable to ascribe the individual C-1 and C-4 signals to the glucose residues adopting different dihedral angles in the crystals. In a similar manner, we ascribed the C-6 signals to either g^-g^+ (asymmetrical crystals^{3a,e,d}) or g^+t (symmetrical crystals^{3b,e} and V-amylose⁴) forms as viewed from the C-6–O-6 orientation with respect to C-4–C-5 and O-5–C-5 bonds. As summarized in Table 1, these correlations seem to be generally good, although they are not quantitative at present.

This work was supported, in part, by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Received, 27th July 1982; Com. 883

References

- 1 (a) H. Saitô, Am. Chem. Soc. Symp. Ser., 1981, No. 150, pp. 125-147; (b) H. Saitô, R. Tabeta, and T. Harada, Chem. Lett., 1981, 571; (c) H. Saitô and R. Tabeta, Chem. Lett., 1981, 713; (d) H. Saitô, R. Tabeta, and S. Hirano, Chem. Lett., 1981, 1479.
- A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 1973, 98, 569; J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc., 1976, 98, 1031.
- 3 (a) W. Saenger, R. K. McMullan, J. Fayos, and D. Mootz, *Acta Crystallogr.*, *Sect. B*, 1965, **30**, 2010; (b) A. Hybl, R. E. Rundle, and D. E. Williams, *J. Am. Chem. Soc.*, 1965, **87**, 2779; (c) B. Hingerty and W. Saenger, *J. Am. Chem. Soc.*, 1976, **98**, 3357; (d) K. K. Chacko and W. Saenger, *J. Am. Chem. Soc.*, 1981, **103**, 1798; (e) K. Harata, *Bull. Chem. Soc. Jpn.*, 1976, **98**, 1031.
- 4 G. Rappenecker and P. Zugenmaier, *Carbohydr. Res.*, 1981, **89**, 11.