A I3C Cross Polarization-Magic Angle Spinning (CP-MAS) N.M.R. Study of Crystalline Cyclohexa-amylose Inclusion Complexes. Conformationdependent I3C Chemical Shifts are related to the Dihedral Angles of Glycosidic Linkages

Hazime Saitô,^{a*} Giichi Izumi,b Takashi Mamizuka,**c Sintaro Suzuki,c and Ryoko Tabeta**^a

^a*Biophysics Division, National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, 104, Japan*

^b*Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, 141, Japan*

^cDepartment of Chemistry, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo, 767, Japan

I3C Chemical shifts of the C-I and C-4 atoms of crystalline cyclohexa-amylose enclosing a variety of guest molecules are significantly displaced as a result of host-guest interaction and are related to the dihedral angles $(\phi$ and ψ) at the glycosidic linkages.

We have previously shown, for several polysaccharides with a variety of glycosidic linkages, that 13 C chemical shifts of the C-1 and C-X atoms at the glycosidic linkages in gel^{1a} and solid^{1b-d} states are substantially displaced downfield (up to

5 p.p.m.) with respect to those in aqueous solution. These displacements may be interpreted by recognising a conformationdependency of ¹³C shifts on changes in the dihedral angles (ϕ and ψ for rotation about the C-l-O_{gly} and O_{gly}-C-X bonds,

Figure 1. 75.46 MHz ¹³C CP-MAS n.m.r. spectra of crystalline cyclohexa-amylose inclusion complexes (A—F) and of lyophilized sample (G). Contact time 1 ms; recycle time 2 s; number of transients $500-1000$. Peaks marked $+$ are from residual signals from the rotor [perdeuteriated poly(methyl methacrylate)] and probe assembly. Insets (a) and (b) are carboxy ¹³C signals of crystalline sodium [1-¹³C]acetate and of potassium [1-¹³C]acetate in CHA, respectively. Spinning sidebands (s.s.b.) of the C-1' in B were minimized by multiplying one spectrum by another taken at a different spinning rate. ¹³C Shifts

respectively); ^{13}C shifts in gel and solid states are determined by fixed values of these dihedral angles, while those in aqueous solution are time-averaged as a result of rapid conformational isomerism about the glycosidic linkages.

Here we report the first **13C** n.m.r. study of crystalline cyclohexa-amylose (CHA) inclusion complexes by the cross polarization-magic angle spinning **(CP-MAS)** technique2 to obtain further information about the conformation-dependent **13C** shifts and hopefully to relate this to the dihedral angles determined by X -ray crystallography.³

Figure 1 illustrates¹³CCP-MAS n.m.r. spectra of someCHA inclusion complexes. Crystalline samples enclosing guest molecules appear *to* give narrowed peaks which split into several **peaks** in the C-1 and **C-4** regions. These *'"C* peaks were readily assigned when compared with the range of shifts of CHA and amylose in aqueous solution;^{1c} they are summarized

in Table 1.¹³C Shifts of acetate, ethanol, and propan-1-ol as the guests (primed carbon atoms) are not significantly displaced from those found in solution. However, the ¹³C signals of the C-I' and **C-4'** carbons of the benzenesulphonate group in the complex are substantially displaced downfield $(-26$ and 12 p.p.m., respectively) compared with those in aqueous solution (pH 7).

It is convenient to discuss the ¹³C shifts of CHA by dividing its inclusion complexes into two groups, one containing symmetrical adducts (with approximate six-fold symmetry) and the other, asymmetrical (deformed structure) complexes. The dihedral angles of the symmetrical complexes enclosing potassium acetate³¹ and sodium benzenesulphonate³⁶ are 169 \pm --1.2 and $-171.2 \pm 2^{\circ}$ for ϕ and ψ , respectively, whereas those of the asymmetrical ones enclosing H_2O ,^{3d} methanol,^{3c} and propan-1-ol^{3a} are broadly distributed in the

	Crystalline inclusion complexes								Amylose ^{υ}		
	Symmetrical			Asymmetrical							
	Potassium acetate	Sodium benzene- sulphonate	Dihedral angles ^a	H ₂ O	Methanol	Ethanol	$Pro-$ pan-1-ol	Dihedral angles ^a	V-amylose	Dihedral angles ^a	Aqueous soln.
$C-1$	100.3	101.9 100.7	$169 + 1^{\circ}$ c	102.1 99.3	102.3 99.7	102.7 99.9	102.7 100.4	$160 + 2$ ^o d $169 + 7$ ^{od}	102.6	164.6° e	100.3
$C-4$	80.9	80.1	$-171 + 2$ °c	81.1	82.3 80.7	82.1 80.5	81.4 80.4	$-183 + 7$ ° ^d $-168 + 9$ ^{od}	82.4	-186.1° e	77.9
$C-6$	61.1	62.1	g^+t	75.6 60.7	75.6 60.3	76.2 60.1	75.7 60.6	$-150 + 5^{\circ d}$ g^-g^+	62.4	g^+t	61.4 74.2
$C-3$ $C-2$ $C-5$	72.6	73.6		72.6	73.0 71.6	73.6 72.0	73.1 71.5		73.2		72.4 72.0

Table 1.¹³C Chemical shifts of crystalline cyclohexa-amylose inclusion complexes (p.p.m. from Me₄Si, \pm 0.5 p.p.m.)

^a The dihedral angles for the C-1 and C-4 shifts are given by the ϕ and ψ , respectively (for definitions, see ref. 3a). The angle for the C-6 shift is given by either g⁺t or g^{-g+} orientation. ^{b 13}C Shift data taken from ref. 1c. ^e Taken from refs. 3b and 3e. ^d Taken from refs. 3a, 3c, and 3d. ^e Taken from ref. 4.

following two or three regions: $\phi = 160 \pm 2$ and $169 \pm 7^{\circ}$, and $\psi = -183 + 7, -168 \pm 9, \text{ and } -150 \pm 5^{\circ}.$ The appearance of two or three peaks is consistent with this distribution of the dihedral angles. Thus, it is reasonable to ascribe the individual C-1 and C-4 signals to the glucose residues adopting different dihedral angles in the crystals. In a similar manner, we ascribed the C-6 signals to either $g-g^+$ (asymmetrical crystals^{3a,e,d}) or g^+t (symmetrical crystals^{3b,e} and V-amylose⁴) forms as viewed from the C-6-O-6 orientation with respect to C-4-C-5 and O-5-C-5 bonds. As summarized in Table 1, these correlations seem to be generally good, although they are not quantitative at present.

This work was supported, in part, by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Received, 27th July 1982; Com. 883

References

- 1 (a) H. Saitô, Am. Chem. Soc. Symp. Ser., 1981, No. 150, pp. 125-147; (b) H. Saitô, R. Tabeta, and T. Harada, Chem. Lett., 1981, 571; (c) H. Saitô and R. Tabeta, Chem. Lett., 1981, 713; (d) H. Saitô, R. Tabeta, and S. Hirano, Chem. Lett., 1981, 1479.
- 2 A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 1973, 98, 569; J. Schaefer and E. O. Stejskal, *J. Am. Chem. Soc.*, 1976, 98, 1031.
- 3 (a) W. Saenger, R. K. McMullan, J. Fayos, and D. Mootz, Acta Crystallogr., Sect. B, 1965, 30, 2010; (b) A. Hybl, R. E. Rundle, and D. E. Williams, J. Am. Chem. Soc., 1965, 87, 2779; (c) B. Hingerty and W. Saenger, J. Am. Chem. Soc., 1976, 98, 3357; (d) K. K. Chacko and W. Saenger, J. Am. Chem. Soc., 1981, 103, 1798; (e) K. Harata, Bull. Chem. Soc. Jpn., 1976, 98, $1031.$
- 4 G. Rappenecker and P. Zugenmaier, Carbohydr. Res., 1981, 89, $11.$